Expression of heteropolymeric ferritin improves iron storage in Saccharomyces cerevisiae.
نویسندگان
چکیده
Saccharomyces cerevisiae was engineered to express different amount of heavy (H)- and light (L)-chain subunits of human ferritin by using a low-copy integrative vector (YIp) and a high-copy episomal vector (YEp). In addition to pep4::HIS3 allele, the expression host strain was bred to have the selection markers leu2(-) and ura3(-) for YIplac128 and YEp352, respectively. The heterologous expression of phytase was used to determine the expression capability of the host strain. Expression in the new host strain (2805-a7) was as high as that in the parental strain (2805), which expresses high levels of several foreign genes. Following transformation, Northern and Western blot analyses demonstrated the expression of H- and L-chain genes. The recombinant yeast was more iron tolerant, in that transformed cells formed colonies on plates containing more than 25 mM ferric citrate, whereas none of the recipient strain cells did. Prussian blue staining indicated that the expressed isoferritins were assembled in vivo into a complex that bound iron. The expressed subunits showed a clear preference for the formation of heteropolymers over homopolymers. The molar ratio of H to L chains was estimated to be 1:6.8. The gel-purified heteropolymer took up iron faster than the L homopolymer, and it took up more iron than the H homopolymer did. The iron concentrations in transformants expressing the heteropolymer, L homopolymer, and H homopolymer were 1,004, 760, and 500 micro g per g (dry weight) of recombinant yeast cells, respectively. The results indicate that heterologously expressed H and L subunits coassemble into a heteropolymer in vivo and that the iron-carrying capacity of yeast is further enhanced by the expression of heteropolymeric isoferritin.
منابع مشابه
Inhibitory Effect of Supernatant and Lysate of Saccharomyces cerevisiae on Expression of exoA Gene of Pseudomonas aeruginosa
Background and Aim: Pseudomonas aeruginosa is an important ubiquitous and especially common pathogen in the hospital. Exotoxin A that encoded by exoA gene has a role in pathogenesis of this bacterium. Today, probiotics are widely used in the treatment and prevention of diseases. The present study aimed to study the Saccharomyces cerevisiae S3 effect on the expression of exoA gene. Materials an...
متن کاملThe Hyphal-Associated Adhesin and Invasin Als3 of Candida albicans Mediates Iron Acquisition from Host Ferritin
Iron sequestration by host iron-binding proteins is an important mechanism of resistance to microbial infections. Inside oral epithelial cells, iron is stored within ferritin, and is therefore not usually accessible to pathogenic microbes. We observed that the ferritin concentration within oral epithelial cells was directly related to their susceptibility to damage by the human pathogenic fungu...
متن کاملEXPRESSION OF HEPATITIS B SURFACE ANTIGEN IN SACCHAROMYCES CEREVISIAE
The genome of HB V virus of serotype ayw cloned in pBR322 and expression shuttle vector p YES2 were used for construction of the HBsAg chimeric genes and their expression in Saccharomyces cerevisiae. Two recombinant plasmids were constructed. One of them contained the coding sequences for the major polypeptide of surface antigen. Another construct carried the major polypeptide with the pre-S2 a...
متن کاملFerroportin-mediated mobilization of ferritin iron precedes ferritin degradation by the proteasome.
Ferritin is a cytosolic molecule comprised of subunits that self-assemble into a nanocage capable of containing up to 4500 iron atoms. Iron stored within ferritin can be mobilized for use within cells or exported from cells. Expression of ferroportin (Fpn) results in export of cytosolic iron and ferritin degradation. Fpn-mediated iron loss from ferritin occurs in the cytosol and precedes ferrit...
متن کاملEnhanced expression of high-affinity iron transporters via H-ferritin production in yeast.
Our heterologous expression system of the human ferritin H-chain gene (hfH) allowed us to characterize the cellular effects of ferritin in yeasts. The recombinant Saccharomyces cerevisiae (YGH2) evidenced impaired growth as compared to the control, which was correlated with ferritin expression and with the formation of core minerals. Growth was recovered via the administration of iron supplemen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 69 4 شماره
صفحات -
تاریخ انتشار 2003